15780240

Document Cover Sheet

for Technical Memorandum

Title: Crabs: the bitmap terror

Author Location Ext. Dept.
Luca Cardelli MH 2C-458 5707 11271
Document No. Filing Case No. Work Project No.
11271-850701-10TMS 39189-11 311403-0101

Abstract

Crabs is a graphic demo which violates most of the assumptions underlying well-structured
window systems. It illustrates both the raw power of bitmap graphics and the restrictions which are

usually imposed on its usage.

Pages of Text 23 Other Pages 2 Total 25
No. Figs. 0 No. Tables 0 No. Refs. 2 Lo

ATAT B i — PROPRIETARY
_ U uant o X

MCSL (11/05/84)




Initiai Distribution Specifications

11271-850701-10TMS (page ii of i

Complete Copy Cover Sheet Only
Executive Directors 112 A A Penzias
Directors 112 1127 MTS
Department Heads 1127 R. B. Ardis
MTS 11271
Clil Review

This document doas not cantain any of the types of information listed below and, in accordance with Cl-ll, may be

fumnished to AT&T-IS.

Network information « Unpublished information releted 1o the existing

dam!ddmbhwhm«&mm»«o

tion of cusiomer premises equipment with ATAT Communications network(s) by meens of which requisied cerrier services are fumished.

Propristary information of Te

for Customer Premises Equipment (CPE) or Enhanced Sarvices « Any software that la of uss by

oo Il 7[5/

Nongeneric Sotware
snhanced services and that ls not generic software.

i

8 Customers - Unpublished information

A. G. Fraser Director
Author Signature
Leg o/
Luca Cardelli
For Use by Reciplent of Cover Shest:
Computing network users may order copies vie the fbrary commend; imemal Technical Document Service
for information, type *man lbrary” after logon. .
Otherwies: . () AK2N-02 () M 7X-101
() ALC 181024 () MV 10-40
Enter PAN If ATST-BL (or S8¢ 1 non-ATAT-BL). () ca1c33e () RD 200-218
Fold thia ahest In hall with this side out. () HO 4112 ) WH

(
Please send a compiete O microfiche O paper copy of this document o
the address shown on the other side.

e e T T S

‘slecommunication acquired from bitling or message detall records that is related to telecommunis
cations service provided by ATAT Communications 1o specifically identified customers and that finds & principsl use in marketing (e.9., information deacribing the
khaNwﬂ-dbMWmm&Wbme«hﬂmﬂmmMnéwmdmMﬂdm\m.

Systerms in CPE products or




=
o T eiores

AT&T BELL LABORATORIES — PROPRIETARY
Use pursuant to G.E.). 2.2

Subject: Crabs: the bitmap terror date: July 1, 1988
Work Program- 311403-0101 - File- 39199-11

from: Luca Cardelli
™: 11271-850701-10TMS

TECHNICAL MEMORANDUM

Laws and violations

A bitmap screen is a graphic universe where windows, cursors and icons live in harmony,
cooperating with each other to achieve functionality and esthetics. A lot of effort goes into making
this universe consistent, the basic law being that every window is a self contained, protected world.
In particular: (1) A window shall not be affected by the internal activities of another window. (2) A
window shall not be affected by activities of the window system not concerning it directly, i.e (2.1)
it shall not notice being obscured (partially or totally) by other windows or obscuring (partially or
totally) other windows, (2.2) it shall not see the image of the cursor sliding on its surface (it can
only ask for its position). '

: Of course it is difficult to resist the temptation to break these rules. Violations can be

.> destructive or non-destructive, useful or pointless. Useful non-destructive violations include
programs printing out an image of the screen, or magnifying part of the screen in a lens window.
Useful destructive violations are represented by the pen program, which allows one to scribble on
the screen. Pointless non-destructive violations include a magnet program, where a moving picture
of a magnet attracts the cursor, so that one has to continuously pull away from it to keep working.
The first pointless, destructive program we wrote was crabs.

History

The history of crabs is presented here with dates, times and people. Not that we kept notes, of
course. The dates and times were reconstructed months later by looking at the creation date of files,
and by what we could remember.

Prologue: Peek

Crabs was written by Mark Manasse and me in November 1982, and evolved in about two
days to its present form. The basic principles of law-violation were investigated a few months .
earlier (August 5, 1982) when Bart Locanthi brought in a Smalltalk videotape. It featured, among
other things, a peek demo. This is a program which looks at a rectangular portion of the screen
(controlled by moving the cursor around) and replicates it in its own screen space in real time.
Beautiful self-referential effects are obtained when this window peeks at itself, or part of itself.
This is a digital version of a video-camera looking at its own tv screen.

Copying data from another window, as peek does, can already be considered a violation of the
rules. But what peek does is even worse because, for a given window, peek will only copy that
part of the window which is visible on the screen (i.e. not obscured by other windows). This
cannot be done by asking a window to access its data: a window is not aware of what parts are
visible. This is stealing data directly from the screen. A well-structured graphics interface will not
allow this, and one has to use low-level routines which are not meant to be used by normal
people. Needless to say, Bart and Mark rushed to implement it. :

1




Step 1: QIX

November 16, 1982, dinner time. Mark wanted to implement the QIX video game for our Blit
terminals [AT&T 85] (knowledge of QIX is assumed here). A QIX screen can get very
complicated, and there are complex rules about how things are allowed to move. Mark started
figuring out clever data structures and algorithms to compute fast line operations. After a while I
said, "Wait a second. Atari is selling arcade QIX machines and there is no way they can have
enough memory to run those algorithms. How are they doing it?" After some thinking: "I bet they
don't keep line segments in data structures, but they draw lines on a bitmap and (gosh!) they just
look at what is in the bitmap to determine line intersections. Gee, this is awful.” Although this was
repulsive to our trained algorithmic minds, that was the germ of the crabs collision-detection trick.
We never implemented QIX.

Step 2: Measles

November 16, later. After a while Mark was convinced and we started implementing. We
decided to start with a single QIX (i.e. a single line with two bouncing dots at the ends) for
simplicity, and to use window boundaries to test the line intersection trick. Mark started dictating
code and I typed it down. This was still a bit too hard, so we simplified it further: forget the QIX,
let's just have little balls floating in the grey area between windows and bouncing against window
borders. We would look at the raw screen bits to determine where a window border was (is there
grey there?). Mark kept dictating, and after a while it was working. It was just about one page of
code. Mark called this measies; we had a lot of measles bouncing around the screen. They were
also bouncing off each other for free because they would see non-grey and change direction. This
was very cheap and convenient: normally one would have to test the position of every measle
against the position of every other measle to determine whether there is a collision.

Step 3: Angry Measles

November 17, very early. Now a problem came up. We have all these measles bouncing
around, and you create a new window and slap it on top of them. Suddenly those poor trapped
measles have nowhere to go, no grey area to run to. They are frozen, paralyzed with terror, and
buried underneath a window. Mark didn't like that at all, and came up with the concept of angry
measles. When a measle gets buried underneath a window, it starts flashing so that it is visible
through the window, as if saying "Hey, get that window off me". It turns out that little flashing
things are very annoying to the human eye, and you would take the window away just to shut them
up: At this point, tired and satisfied, we went to sleep.

Step 4: Hungry Measles

November 17, late morning. 1 slept a lot less then Mark did. When I came in, I started showing
measles to people. They thought it was cute stuff. Some objected to the flashing measles solution.
We had considered many alternatives the night before, and I wasn't totally satisfied with that
solution either. Dave MacQueen said something like "they should eat their way out." I thought that
was a possibility, only sillier than most. After he left, however, that idea kept coming back. I went
to look at the code (as I said, Mark did the dictating because he was more familiar with Blits then I
was), and discovered that I could implement Dave's suggestion by changing a single line of code.
That seemed to be easy enough, so I did it. When a measle was confronted with a non-gray area, it
would change a little bit of that area to grey. Trapped measles could then build up grey regions and
eventually escape.

The new version, hungry measles, had quite a different character. It wasn't cute, it was
awesome. Those little balls would eat away your windows. If trapped, they would escape, leaving
you wounded. There was no protection against them. You could set up barricades of windows to
protect a part of the screen you wanted to work in, and they would erode them. They would
infiltrate along the borders of the screen, where you are not allowed to put windows. You couldn't
keep them all under control: they were too many, too quick. You couldn't get distracted.




Step 5: Crabs

November 17, afternoon. 1 went up to the unix room and started the program on a terminal.
People gathered, and several expressions of disgust were heard. Jim Weythman said "they look
like crabs!".

Everybody knew instantly that that was the right name for it. I went back to my room and
designed the basic crab icon. Mark came back. With his help, we prepared the crab icon so that it
would look nice on a grey background. We made it so that crabs would move sidewise, and would
turn around according to their prevalent direction. Crab legs would appear to move, because of an
unexpected optical interaction with the grey background. We made the crabs window self-destruct
so that there was no way of stopping crabs, short of rebooting the terminal. Finally, we allowed the
crabs to see the image of the cursor on the screen, so that you could use the cursor to poke them
(they would bite it, but the cursor regenerates). We showed it to Rob Pike again. He said "That's
it, don't touch it any more”.

Impact :

In the next few days, unaware people were exposed to crabs in the comfort of their own
terminal ("Let me show you something..."). The question would always come up: "How do you
stop them?" "You can't" "Yes, but how do you stop them?" Crabs could be downloaded remotely,
on somebody else's terminal, while he was working. They could be left dormant (Rob's idea)
during the lunch hour, to suddenly come up in the middle of the afternoon. They could be timed to
start in the middle of an important demonstration. Once, Rob got them to eat (irrecoverably) part of
a picture an artist was drawing on a Blit. The artist was offended, not by the damage picture, but by
such inexplicable violation of what she considered to be laws of nature. Very soon, nobody could
pass by Bell Labs without being exposed to crabs.

Programs were written to fight crabs on their own grounds. The idea was to run a program
which would neutralize the crabs and allow you to keep working, without rebooting the terminal.
Those program were either unsuccessful, or partially neutralized the crabs but made the Blit
practically unusable. One day we got a program in the mail, called squishcrabs. It would poke the
process table looking for a process which looked like crabs, and kill it. On top of that it would
squish every crab on the screen to a black blob. That was cheating, but it worked. However,
squishcrabs was too dependent on the process and program structure, and stopped working in later
versions of the system.

In the following months Mark and I wrote many crab-like programs. Although interesting in
their own way, none came close to the appeal crabs have. The best use we have for them is to make
them fight overnight against crabs for screen territory, and watch the result in the morning. Crabs
are still undefeated; they either wipe out the opposition, or come to a stable situation with crabs in
one region of the screen and opponents in the other.




Crab Rules
1. Crabs live on grey screen areas.

2. On grey areas they move around randomly, but smoothly. The orientation of the crab icon
is determined by its direction of movement, so that they always appears to move sidewise.

3. When they bump into non-grey areas (including other crabs) they bite them by changing a
little non-grey region into a grey region. After that they bounce off in a new random direction.

The crab-like (or insect-like) random motion on grey areas is obtained as follows. Every crab
step is, in first approximation, determined by the current velocity. Every step has a probability (e.g.
one in seven) of being subject to a deviation. If the deviation takes place, it is a small random
perturbation (e.g. -1, 0 or +1) of the current velocity, independently chosen for the x and y
components. There is a maximum speed (e.g. 7 pixels per step).

Every crab does the following: _
0. Draws itself in the initial position. Starts with a random direction and velocity.
1. Removes itself from the old position (by drawing itself in XOR mode).
2. Determines its new position, based on its current direction and velocity.
3. Looks to determine whether it is about to move on a grey area:
Yes:
3.1. Moves there. Goes to 4.

N e
1NV,

3.2. Makes the new position grey by drawing a 4x4 grey pattern.
3.3. Does not move. Picks a new random velocity, independent of the current velocity.
Continues at 4.
4. Draws itself (in XOR mode) in the new position, as determined in 3.1 or 3.3.
5. Adds a random deviation to its velocity, as described above.
6. Back to 1.

Crab icons must be drawn in XOR mode, to be able to restore the background when the crab
moves away. Unfortunately, if one draws a crab icon in XOR mode on a gray background, the
crab itself gets greyed.To avoid that, crab icons are prepared so that they will look right when
greyed. This is done by greying them beforehand (two XOR greying operations cancel) in all
possible relative positions of the crab and the grey background. For the grey pattern we use, which
repeats every two pixels vertically and every four pixels horizontally, there are 8 possible relative
positions. :

Some of the black pixels of the background immediately adjacent to a crab icon stick to it,
visually. Depending on the speed of movement, this produces an optical illusion so that the crab
legs appear to move.




| I

Thirty crabs start at the top, threatening the window with pictures of me and mark.
Center: magnified crabs on grey, in all possible displacements w.r.t. the background.

5
































































